ixemul.info

ixemul.info

COLLABORATORS
TITLE -
ixemul.info
ACTION NAME DATE SIGNATURE
WRITTEN BY April 16, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ixemul.info iii

Contents

1

ixemul.info 1
1.1 IXemullibrary o o . e e e 1
1.2 IXemullibrary/Introduction e e 2
1.3 IXemullibrary/Installing IXemul.library e 2
1.4 IXemullibrary/Copyright e e e e e 3
1.5 IXemullibrary/Authors e 4
1.6 IXemullibrary/Configuring IXemul.library 5
1.7 IXemullibrary/GNU License o it e e e e e e e e e e e 6
1.8 IXemullibrary/IXemul.trace o o e e e e e e 14
1.9 IXemullibrary/Recompiling IXemul.library L 16
1.10 IXemullibrary/Signals in IXemul.library 16
1.11 IXemullibrary/Porting Unix Applications i e 19
1.12 IXemul.library/Where to Send Bug Reports and Suggestions 21
1.13 IXemullibrary/Frequently Asked Questions e 21

ixemul.info 1/22

Chapter 1

ixemul.info

1.1 IXemul.library

IXemul.library

*hkkhkhkkkhkKhkkkk kK

Introduction
Why IXemul.library?

Installation
How to Install it

Copyright
Copyright Restrictions

GNU License
The GNU General Public License

Authors
The Authors of IXemul.library

Configuring
Configuring IXemul.library to your tastes

Tracing
Tracing Your Programs with IXemul.trace

Recompiling
Recompiling IXemul.library

Porting UNIX Apps
Porting UNIX Applications

IXemul’s Signals
Implementation of BSD Signals

Bugs
Where to Report Bugs or Suggestions

ixemul.info

2/22

FAQ' s
Frequently Asked Questions

1.2 IXemul.library/Introduction

Wh

* k

fo
of

@)

o

On

y IXemul.library?
kA kk Ak khkkkAkkkkkKhkKxk

IXemul.library was originally written to provide an environment
r the porting and subsequent compilation of UNIX C programs. The design

the library was therefore guided towards UNIX/BSD compatibility, and *notx*:

To be too conservative with resources.

To be particularly conformant to Amiga habits. Thus if I had to decide
whether I should make a function act more like an Amiga function or
more like a UNIX/BSD one, I decided for the latter. As an example:
_cli_parse() does wildcard expansion, and tries to apply more or less
UNIX/BSD shell semantics to an argument line, it doesn’t call
ReadArgs () .

The types used in my own source code are all from sys/types.h (except
BPTR) . I don’t think capitalized identifiers should be used for typedef’d
types. According to C-conventions, anything written in captials should

be “#undef’inable, which typedefs aren’t. Thus if you write contributions
to be included into the official distribution of this library, code
according to this. Use ‘u_char’ and not UBYTE, etc. I don’t care that
this is against the Commodore coding standard, this is my code, and

I decide what I like and what not.

To be particularly suited for inclusion into a shared library, although
most things xarex shared now. What I’'d really want for the Amiga is
the concept of a dynamic linker.

the other hand, it is:

Expandable. As an example, a file descriptor already can refer to ‘real’
files, directories, memory buffers treated as files.

Patchable. If you want some function to behave differently, you can
SetFunction() it, and the rest of the library should use your new entry.

1.3 IXemul.library/Installing IXemul.library

* %

Installing IXemul.library on your system

Ak Ak kA kA hkhkhAhkhhkhkhkhkhkhkhkrkhdrhhkhhkkhkrxkhkxkk*x*

In the libs directory of this release are 4 versions of

IXemul.library:

1) IXemul.library.000

ixemul.info

3/22

2) IXemul.library.020noffp
3) IXemul.library.020ffp
4) IXemul.library.030

There is also a special version of IXemul.library called
ixemul.trace. More on this later.

If you have a 68000 or 68010: Rename IXemul.library.000 as
IXemul.library and place it in your libs: directory.

If you have a 68020 or a 68030 and NO math coprocessor: Rename
IXemul.library.020noffp as IXemul.library and place it in your libs:

directory.

If you have a 68020 and a 68881 or 68882: Rename

IXemul.library.020ffp as IXemul.library and place it in your libs: directory.

If you have a 68030 (and a 68881 or 68882) or a 68040: Rename

IXemul.library.030 as IXemul.library and place it in your libs: directory.

Next, copy the files in 1lib to gcc:1lib and the files in
lib/libb to gcc:1ib/libb.

If you have a 68020 or higher, also copy the files in
1ib/1ib020 to gcc:1ib/1ib020 and the files in 1ib/1ib020/1libb to
gcc:1ib/1ib020/1ibb.

Copy the include files to their respective places in
gcc:include.

IXemul.trace provides a means of tracing the library calls made
by your program and printing them in a CLI window. Just copy this file
into your libs: directory for now. See
IXemul.trace
for more details.

1.4 IXemul.library/Copyright

Copyright Restrictions

kAR AhkAkkhkhAkkkhkhAk Ak kA hhkkk*k

This library is Copyright (C) Markus Wild. Portions are

Copyright (C) Rafael W. Luebbert. Both authors have placed this
library under the governance of the GNU Library General Public License
as published by the Free Software Foundation; either version 2 or (at
your option) any later version. See

GNU License

for the details
of this licensing agreement.

Also: This product includes software developed by the
University of California, Berkeley and its contributors.

ixemul.info 4/22

After reading the GNU License, you’ll notice, that a program
that just uses the library by using OpenLibrary (), and calling functions
in it, is to be considered as a ‘work that uses the Library’, and 5.
of COPYING.LIB says for this case: " Such a work, in isolation, is not
a derivative work of the Library, and therefore falls outside the scope
of this License."

Since both I and Markus Wild declare the glue functions created
by compiling and running gen_glue.c (in 1lib/) to be in the Public Domain
(thus not to be covered by any license), your compiled and linked
executable will NOT become a derivative of the library, and will thus
not be subject to this license. Thus, you may use the compiled version
of the glue files and the stdio functions, libc.a (except alloca.c,
please see the copyright notice in its header. Use the builtin allocaf()
(__builtin_alloca() to be explicit) in all situations where this is
possible) and crt0.o in a commercial product without making it a
derivative of the library and thus make it subject to the library
license. However, you must tell your customers that ixemul.library is
free software according to this license, and where they can get a copy
of its source code.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

1.5 IXemul.library/Authors

Authors
* Kk Kk Kk Kk kK

Some of the code in the library is taken from NetBSD, written
by various authors. These files separately are Copyright (C) by The
Regents of the University of California. Their inclusion in the

library is governed by their restrictions. See
Copyright
for the

restrictions.

Also, some of the code in the library is taken from other
software under the GNU General Public License and is thus governed

by their restrictions as well. See
Copyright
for the
restrictions.

The original version of ixemul.library was written by Markus
Wild. He now presently works on NetBSD, a UNIX port for the Amiga.
For those interested in running a Public Domain UNIX, you can get
the necessary files ftp from: ftp.iastate.edu or from
sun—-lamp.cs.berkeley.edu.

ixemul.info 5/22

This version was built and updated by Rafael Luebbert. He
can be reached VIA E-mail at LuebbeRW@lp.musc.edu.

The following people have contributed files to be included in
the IXemul.library:

Leonard Norgaard
Ray Burr

Also, thanks to all beta-testers and everyone who reported
bugs in previous releases.

1.6 IXemul.library/Configuring IXemul.library

Configuring IXemul.library to your tastes
R R IR i b b Sh b S S b 2 S b dh S b S Sh b Sh b S Sh b S Sh S d Sh b d Sh b b o

Ixconfig is used to tailor the library to your requirements and/or
habits. Just running ixconfig without options prints the current settings,

which look like this by default:

1> ixconfig

Translate . and .., translate /, don’t translate symlinks,
allow AmigaDOS notation, membuf size = 0,
red zone size = 0, stack watcher is disabled (and not active).

Here’s an explanation of those settings:
"translate . and .." mapping of ‘a/./b/../c’ into ‘a/b//c’ is enabled
"translate /" mapping of ‘a///b’ into ‘a/b’ and ‘/device’ into
‘device:’ 1is enabled. Note: You can’t currently get
a directory of the virtual ‘/’ directory this way.
"translate symlinks" apply ‘translate /’ to contents of symlinks as well
"AmigaDOS notation" allow use of device names in the colon form
(ie. sys: instead of /sys), and don’t force ‘..’
notation.
"membuf size" if you set a non-zero value here, all files upto
that value, that are opened O_RDONLY are read
into memory, and read/seek operations occur in memory.
"red zone size N" size of ‘safety net’. If your program uses
so much stack, that the stack pointer is more
than N bytes near the stack bottom, your program
is sent a SIGSEGV signal. Red zone size is used
when starting a new process, if you change it later,
no already running processes are affected.
"stack watcher" global toggle. If disabled, no SIGSEGV signal is
sent to any program (but if red zone size is > 0,
the process keeps a pointer, so that if you reenable
the stack watcher, SIGSEGV will be sent again).

This was an explanation of the output of ixconfig, to change those wvalues
type ‘ixconfig -h’ for an explanation on the available switches. One
switch might need further explanation: ‘-s’. If you specify ‘-s’, ixconfig
goes to sleep after setting the new parameters, and won’t return until you

ixemul.info 6/22

break it with ~C. This is the preferred switch if you run ixconfig from your
startup-sequence in the background, as then your changes can’t be undone by
flushing the library (ixconfig keeps it open, so that Expunge () can’t flush
it).

1.7 IXemul.library/GNU License

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software—--to make sure the software is free for all its users.

This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them
with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright
the library, and (2) offer you this license which gives you legal

permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain

ixemul.info

7/22

that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we
want its recipients to know that what they have is not the original
version, so that any problems introduced by others will not reflect on
the original authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that companies distributing free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To prevent this,
we have made it clear that any patent must be licensed for everyone’s
free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary

GNU General Public License, which was designed for utility programs. This
license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary

one; be sure to read it in full, and don’t assume that anything in it is
the same as in the ordinary license.

The reason we have a separate public license for some libraries is that
they blur the distinction we usually make between modifying or adding to a

program and simply using it. Linking a program with a library, without
changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in

a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License
treats it as such.

Because of this blurred distinction, using the ordinary General
Public License for libraries did not effectively promote software
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended to
permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free

libraries that are incorporated in them. (We have not seen how to achieve
this as regards changes in header files, but we have achieved it as regards
changes in the actual functions of the Library.) The hope is that this

will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary

General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

ixemul.info

8/22

0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

ixemul.info 9/22

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in

these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a

ixemul.info

10/22

medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, 1is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under

ixemul.info

11/22

Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is wvoid, and will automatically terminate your
rights under this License. However, parties who have received copies,

ixemul.info 12/22

or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if

ixemul.info

13/22

written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

ixemul.info

14 /22

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

1.8 IXemul.library/IXemul.trace

Tracing Your Program Using IXemul.trace

kA hkhhkhkhkhkhkhkhkrkhhkrhhkhkhkhkrhkhkrhkhkrhkhkhrhkhkxkhkx*x%

This is an attempt at a tracer for ixemul.library. Since it

scans every

call made thru the library base, it catches even more calls than for

example SnoopDOS.

Since tracing support slows down xallx clients of the library (as each
call is now routed thru tracing functions), there are two library
versions. ixemul.library itself doesn’t contain tracing support, using
the tracer with this library gives you a "Function not implemented”
error. To use the tracer you have to load ixemul.trace as the main

library. See below for more detailed instructions.

The tracer itself is quite straight forward, a lot more calls could use

ixemul.info 15/22

more descriptive parameters, its mostly typing work, but I didn’t feel
like providing more ioctl, open, pipe like print functions ;-))

The option you’re most certainly going to use is ‘-m’, as the library
uses sigsetmask () internally a lot, and its mentioning would Jjust clutter
the overwhole display.

Short instructions to get the tracer up

o Flush ixemul.library out of the system. I use "avail flush". If you
are using ixconfig to keep the library loaded so your defaults don’t
get changed, you’ll have to reboot.

o Make sure the system loads ixemul.trace instead of ixemul.library
next time it tries to fire up ixemul.library. I usually do this by
renaming IXemul.library to IXemul.lib, and then renaming IXemul.trace
to ixemul.library. DON’T FORGET TO SWITCH BACK LATER!

o Start the tracer (in bin:trace). The following options are currently
recognized (see bin:trace.c as well):

-a print all calls, even those considered ‘not interesting’, for
example internal stdio calls, 32bit arithmetic emulation for 68000,
and such stuff you generally don’t want to see.

-1 normally, the tracer shows a function call when that function returns,
to be able to display the return value (and ‘errno’ in parenthesis).
When you specify '-i’, it always displays function on entry, instead
of on exit. See below for current problems without the -i option!

-m skip sigsetmask calls. This function is used extensively inside
the library, and will in most cases just clutter the tracer output
with information you don’t want to see.

-0 specify a logfile. If -o is omitted, output goes to stdout.

-p only print output from a specific process. You have to provide the
decimal address of the process (ok ok, this is not too user-friendly,
I'm open to better alternatives ;-)). Default is to scan all current
ixemul clients.

-s only print calls to specific system call. You have to specify the
number as found in <sys/syscalls.def>. Again, this option could be
much more user-friendly, but I'm a lazy guy;-)

You should now see a log of all functions involved from your program(s),
and some functions involved as a consequence of your functions from inside
the library. The output means:

$7588790: <strcmp ("foo", "-n")=57 (0)
\ | | | errno value
\ | | result of function
\ | parameters
| type of log, < means exit, > means entry
process address

Some known problems

There seems to be some race condition, that can result in deadlock when

ixemul.info 16/22

running without the -i flag. I don’t know, where the problem lies, such
stuff is really hard to find...

Currently, if trace-on-exit is enabled, the function is called with

16 arguments, no matter how many arguments you passed to it. This should

be enough for 99% of all applications, but you may have more than 16 arguments
to a printf () somewhere.

Functions returning more than a 4byte result xdon’t* work unless you specify
the -1 option!!

1.9 IXemul.library/Recompiling IXemul.library

Recompiling IXemul.library

kA hkkhhkhkkhkkhkhkhkhkrhkhkrhkhhxhkhkkxkk*x*

First, you’ll need RCS, or a port of it. I use HWGRCS which
is wonderful. You’ll also need to get bsd-1d, which supports reloc-sizes
that 1d does not.

Sources are written for compilation by GCC. You might be able to
compile 95% of them with any ordinary ANSI-C compiler, but there are
cases where you have to change things for non-GCC environments
(mostly asm() situations).

To regenerate the library, cd to ixem40.3/ and type allclean.
This is a batch file that will clean any older version objects you

have in the subdirectories. Then choose the allmake file appropriate
to your hardware and type "allmake" then go make a sandwich and watch
some television - it will take some time.

For 68000 users, you’ll have to find GNU’s gas 1.36 as gas 2.3
incorrectly parses aligns in some assembly. You will also have to
recompile some files and assemble them with gas 1.36. See the file
"readme.68000.recompile”" for more details on which files.

To regenerate libc.a, cd into ixem40.3/ and type ‘libcmake’.
Wait for it to finish (can take gquite some time, it has to create more
than 400 files !).

As an explanation to the separate compilation of crt0.o: this has to be
compiled with ‘-fwritable-strings’, since you have to be sure that ENTRY ()
is the first thing in the generated object file. TIf you don’t specify
‘—-fwritable-strings’, you’ll get string constants at the first executable
address in your programs, and this will get you (and your computer) into
meditation if you try to execute such programs ;-))

1.10 IXemul.library/Signals in IXemul.library

How BSD signals are implemented
R R IR I b SR Sh b b Sb b S Sb b 2 Sh b S Sb b d Sb b 2 dh b b dh

ixemul.info

17 /22

I tried to implement as much of Berkeley style signals as possible on the
Amiga. This includes a trap handler as well as an asynchronous signal
facility. The one thing not implemented are interruptable system calls.
Since there are no ‘real’ system calls on the Amiga (ie. no calls that are
executed in Supervisor mode), those calls cannot normally be interrupted,
ie. forced to return to their caller. So all functions except sigpause()/
sigsuspend() will return to where they were interrupted if a signal
occurs.

These 32 new signals are 32 really new signals, not tied to any of the 32
Amiga signals provided by Exec. The one exception is SIGBREAKB_CTRL_C,
which is by default bound to generate a SIGINT.

Signal handlers are called with the following arguments:
void
signal_handler (int signo, int code, void =*address, struct sigcontext =*sc)

Where
signo: 1s the signal number that occured, see <signal.h>
code: is a more specific characterization of signo available with some

signals. It is available with all signals that are generated
because of a processor exception, and then contains the format
identifier of the exception frame (this is correct even for the
68000, where such an identifier is faked, ie. it doesn’t really
exist). Thus a ‘division by zero’ exception would be invoked by
signal_handler (SIGFPE, 0x2014, address, sc)

address:address refers to the instruction that caused the signal.

sc: please don’t use sc, as it may change in the future. It contains
the context to restore after the signal handler returns.

R R IR I b b S b S Sh b 2R Sh b 2 I b S Sh b 2 Sh b Sh b dh b dh b dh b 2h b b dh Sb b dh b b 2h b b S Sh b SR Sh b 2 b b S Sh b S Sh b 2 b b dh b dh S 4
If you use signals in your own code, make sure that you never allow a
situation, where when your program is interrupted resources stay allocated!

R R S B R S S R S R R R R R I I R R I I I I I I I I I I I 2 b b b b b b b I I b b b

That is, the following example is BAD

fh = Open ("foobar", MODE_OLDFILE);
if (fh)
{
do something with it
Close (fh);

If your program is interrupted and terminated after you got your file handle,

‘fh’ will never be closed! There are two solutions to get around this problem,

either use library functions from ixemul.library, or explicitly mask signals
while you have resources locked. Thus in this example, either do:

fd = open ("foobar", O_RDWR);
if (fd >= 0)
{
.. do something with it
close (fd);

ixemul.info 18/22

in that case the library will do resource tracking on fd. Or explicitly mask
the signals:

omask = sigsetmask (~0); /% mask all signals x/
fh = Open ("foobar", MODE_OLDFILE);
if (fh)

{
do something with it

Close (fh);
}

sigsetmask (omask); /* reset the mask x/

Note that the second solution is worse than the first one, because the

user may send the process a non-maskable signal that would terminate the
process unconditionally (SIGKILL does this), and don’t forget that the user
isn’t able to break your program as long as you have signals masked!

Ixemul.library does resource tracking on all file-related functions (create(),
open (), dup(), pipe()) and on memory allocations thru malloc() and realloc().
Thus if you use those functions instead of dos.library and exec.library
functions, you don’t need any clever resource tracking stuff to do on your
own, that’s what the library is for ;-)

If you use Amiga specific resources like Windows and Screens from
Intuition, make sure to add an atexit () handler to close those resources,
if the user should decide to interrupt your program. Before the program is
left, the chain of registered atexit-handlers is called in exit (). So
PLEASE NEVER EVER call _exit () if you have registered any custom atexit ()
handlers. It is a bad habit anyway, but normally you may call _exit ()
without resource loss (stdio won’t flush its buffers, but that’s about
all), as long as you close ixemul.library after use, and this IS A MUST, as
for every Amiga shared library anyway.

I provided a new unique Amiga specific signal called SIGMSG. If you set up
a handler for this signal, then
o the default mapping from SIGBREAKB_CTRL_C into SIGINT will no longer
occur
o vyour handler is called with the following arguments
signal_handler (SIGMSG, new_exec_signal_mask)

In this case, you have to deal with Exec signals yourself, so don’t forget
to clear those signals that you want to receive notification about again
later.

Thus if you’d want to handle SIGBREAKB_CTRL_C yourself, don’t forget to

SetSignal (0, SIGBREAKF_CTRL_C)

at the end of the handler, or you’ll never get notification about that
signal again.

If your program is interrupted by a signal and the default action of that
signal is to terminate your program, and you didn’t set up a handler to deal
with that signal, your program is terminated by calling ‘exit (128 + signo)’.
There are no core-dumps yet, I first have to think about a useful format

for a debugger that takes care of the Amiga’s memory architecture.

ixemul.info 19/22

The signal implementation uses some of the Berkeley kernel sources of the
4 .3BSD-reno release for the hp300. I didn’t disable everything that isn’t
implemented currently, so you might face strange behavior if you currently
try to send a SIGSTOP to a process using the library, you better not ;-))

Currently supported are the following signals:

SIGINT: bound to "C (SIGBREAKB_CTRL_C) unless there is a SIGMSG handler
SIGILL: generated by some hardware exceptions

SIGFPE: generated by some hardware exceptions

SIGBUS: generated by some hardware exceptions

SIGALRM: if you use alarm() or the ITIMER REAL interval timer

SIGVTALRM: if you use the ITIMER_VIRTUAL interval timer

SIGPROF: if you use the ITIMER_PROF interval timer

SIGMSG: if you provide a signal handler for it

SIGCHLD: a viork()’d child died (or stopped ?;-))

SIGSEGV: the programs used more stack than you allowed it to (see below)

more are to follow. You may send any of the 32 signals to a process using
the library with the ‘kill ()’ function, the default behavior of a process
is described in a UNIX/BSD man page for signals. As mentioned above,
stopping a process isn’t currently implemented, and may produce strange
behavior.

1.11 IXemul.library/Porting Unix Applications

Porting UNIX Applications

AhkkhkkhkhkkhkhkhkkhkhkhAxAkhkhkkhhk kA kkh kA ik

Several functions are missing from IXemul.library, mainly those
that depend on UNIX’s unique memory handling. sbrk and brk are old
archaic functions that should be replaced in any new ports of UNIX
applications anyway.

UNIX/BSD process management is one of the most nasty design differences
between AmigaDOS and UNIX/BSD. ‘fork ()’ for example is hardly possible to
implement on AmigaDOS, as it requires to create an identical copy of the
parent process. This is only feasible with virtual memory, where processes
can be mapped at equal places in memory. Under AmigaDOS this would have

to be simulated by copying of stack and malloc’d data whenever a process
is activated, and copying them to a safe place before it is disactivated.

This problem can be avoided, if the program to be run under AmigaDOS is
only fork()ing, because it just wants to start another process. In that
case, no such copying as described before is necessary, and BSD therefore
invented the ‘vfork ()’ function, which works like ‘fork’, but runs the
child on the parents memory segments (stack and malloc’d data). While the
child is using the parents resources, the parent is sleeping in a not
interruptible state.

That much for theory;-) I tried to implement an as compatible as possible
vfork () function, that behaves like the BSD one.

Since I won’t try to implement ‘fork’, I provided a possible alternative

ixemul.info 20/ 22

(you tell me;-)). As an extension, you get the ‘vfork_ resume ()’ function,
which causes the parent to resume, just like it would if you called
‘_exit ()’ or one of the ‘execx ()’ functions. Since this function is quite
dangerous (and an even bigger hack than vfork() itself..), here’s what’s
happening in ‘vfork_resume ()’ :

o the child switches to its own stack. After vfork (), the child is
using the stack of the parent process. Since no two processes can
share the same stack in parallel, vfork_resume() causes a switch
to the ‘real’ stack of the child.

o the parent is sent a wakeup message.

O both processes run concurrently

The first point is the most important one: Since vfork_resume () changes
the stack pointer of the running process, you can’t refer to any variables
or parameters anymore after calling vfork_resume()! Only register
variables survive such a call, and you have to explicitly store values

in register variables that are subject to survive!

There’s another potential problem with vfork_resume () :

KK R AR R AR A AR A A A A A AR A AR A A KR A A A A A AR A I AR AR AR A A A A A A AR AR A AR Ak

Don’t exit () from the parent before all vfork()’d children have died!!

kA hhk kA hhkhkh kA hhhkhhhk bk hkhkdhk ko hhk ko h bk ko kh kA ko kA ko kA h kA h kA hhhkhhkhk kA hdkhhkhkhhkhkhhkkhkrhkxkkx*x

Since exiting from the parent causes the parents code and data segments to
be deallocated, the child would find itself without code space to run
on, and would probably cause a severe machine crash!

So always call at least ‘wait (0)’ before returning from the parent.

In most cases, you just use ‘vfork ()’ to later overlay the process with

a new image, that is you want to start another program. The way AmigaDOS
loads processes is not too well suited to do ‘exec’ style program starting,
yet it is possible, although with slight resource wasting..

First problem is, that all exec* functions pass an argument vector to

the new program, whereas AmigaDOS programs expect to be passed an argument
line (instead of the vector of arguments). Since in my opinion it would

be a good thing if a program could get an argument vector directly (in that
case the inherent problem of passing multi word arguments to a program would
be finally solved, no more weird quoting needed!). That’s why I provided

a mechanism that allows this vector passing, and it works like this (look

at crtO0.c for a concrete implementation of this concept!):

The program has to provide a magic header at the first executable location
in its code. This magic header looks like this:
o JMP instruction to common AmigaDOS startup
o struct exec area. Use the OMAGIC a_magic code.
o provide an alternate entry vector in a_entry. execve() jumps thru
this vector to pass vectors to your program, instead of going
thru the normal AmigaDOS startup part.

ixemul.info

21/22

As long as you use my crtO.o and libc.a, this whole thing is completely
transparent to your program. You only have to care for it if you want
to support the mechanism in other languages as well.

The second problem is how to start ‘old’ AmigaDOS programs from execve() .
If the program has the described magic header, starting is easy. Else
another approach is taken. Since the new program can’t refer to the

real file descriptors (I can’t pass the open library without my startup
code), I have to setup DOS fields to use my filehandles. This may succeed
or not, depending on whether the descriptors in question are realized by
DOS files or not (in the future a not-compatible alternative would be
descriptors that refer to sockets!). Actual starting of the program is
done with RunCommand () .

1.12 IXemul.library/Where to Send Bug Reports and Suggestions

Where to Send Bug Reports and/or Improvements in Code

kA hhhkhhkhkhhkhkrhhkrhkhkhhkhkrhhkrhhkhkhhkhkhhkdhhkhdhkhkhkhhkhkhhhrkhkxkkx*x

If discover any bugs in ixemul.library, please send me e-mail
with the following information:

1) Your hardware configuration.
2) The version of ixemul.library you are using.
3) The function called when the crash occurred (using ixemul.trace)

If you have any suggestions or improvement in the code, please
send them to me so they can be included in the next version.

My E-Mail address is: LuebbeRW@lp.musc.edu
I also read posts made to amiga—-gcc-port@lists.funet.fi

1.13 IXemul.library/Frequently Asked Questions

Frequently Asked Questions

kA hhkkhhkkhkhkkhkhkkhkhkkhkhkhhkhhkhkkhkkkxk*x*k
1) How can I inline IXemul.library’s functions like the Amiga’s functions?

You can’t. The library is designed to be used by C, and not by
assembly. So parameters are passed on the stack rather than in
registers. This also means that there is no ‘fd’ file, and you can’t use
any current library call pragmas to access its functions. Recall though,
that calling functions of ixemul.library inline will not result in an
order of improvement as calling standard library functions inline. The
glue functions don’t have to shuffle arguments from and to the stack,
they just do a jump over the base table and are therefore very short

ixemul.info 22 /22

and very fast.
2) Can’t you take out that damn trap handler so I can trace my programs-?
I plan on releasing a patch to disable the trap handler. 1In the

meantime, you can use ixemul.trace, and you can use PowerVisor 1.42 with
the dirty mode enabled.

	ixemul.info
	IXemul.library
	IXemul.library/Introduction
	IXemul.library/Installing IXemul.library
	IXemul.library/Copyright
	IXemul.library/Authors
	IXemul.library/Configuring IXemul.library
	IXemul.library/GNU License
	IXemul.library/IXemul.trace
	IXemul.library/Recompiling IXemul.library
	IXemul.library/Signals in IXemul.library
	IXemul.library/Porting Unix Applications
	IXemul.library/Where to Send Bug Reports and Suggestions
	IXemul.library/Frequently Asked Questions

